1 Homotopy

Definition (Chain complex). A chain complez is a sequence of abelian groups
and homomorphisms

s Oy o s o B o 2
Definition (Cochain complex). A cochain complex is a sequence of abelian
groups and homomorphisms

0——e0 Ly or 42 s,

ker(d; : Ci — Cy_4) ker(d : C' — Cit1)

Hi(C.)= ———————— . C)= — -
@) im(diy : Cipq = Ci) EHE) im(di-1: C*-1 = CY)

diedin =o

2 Singular (co)homology
Definition (Singular chain complex). We let C,,(X) be the free abelian group
on the set of singular n-simplices in X. More explicitly, we have

Cn(X) = {Z neo 0 A" = X, n, € Z,only finitely many n, nmrzern}‘

We define d, : Cy(X) — Cpmy (X) by

o i(fl)'ao&,

i=0

3 Four major tools of (co)homology

Theorem (Homotopy invariance theorem). Let f ~ g: X — Y be homotopic
maps. Then they induce the same maps on (co)homology, i.e.

Corollary, If f: X — Y is a homotopy equivalence, then f, : H.(X) — H.(Y)
and f*: H'(Y) — H’(X) are isomorphisms. (ﬂv ond ¥ are the inverses).
Theorem (Mayer-Vietoris theorem) Let X = AU B be the union of two open

subsets. We have inclusions

ANB —2 A
[w [],\ .
B—7E , x
Then there are homomorphisms dyy : Hy(X) = Hy1(AN B) such that the
following sequence is exact:
Dmv Hﬂ(A n B) A Bipe H,,(A) @ Hw(B) Jas—IB« H,,(X)
- - /4’

Omv_

Y
= Hyoa(ANB)"“2 Hy (A) @ Hy oy (B 25 H,_y(X) —— -

- Hy(A) & Ho(B) 22222 Hy(X) —— 0

Furthermore, the Mayer-Vietoris sequence is natural, i.e. if f: X = AUB —
Y = U UV satisfies f(A) C U and f(B) C V., then the diagram

Hor (X) 245 (AN B)' 225 [, (4) & H,(B)' 225 1, (x)

I e neon. I

Hoa(¥) 255 H (U N V)55 H, () @ Hy(V) 5225 H,()
comimutes.
For certain elements of H,(X), w ¢ specify what dyry does to it.

The meat of the proof is to show that every element of H,(X) can be made to
look like that. If [a + b] € H,(X) is such that a € C,(A) and b € C,,(B), then
the map sy is specified by

v (la+b]) = [dn(a)] = [~dn(b)] € Hy-1(AN B).

A — X for the
as well, and we

Definition (Relative homology). Let A € X. We write
inclusion map. Then the map i, : Cp(4) = Cu(X) s inject
write

Cu(X)
Cu(4)”
The differential d, : Co (X) = Coo1 (X) restricts to a map C(A) = Cp1(A),
and thus gives a well-defined differential d,, : C (X, A) = Cyu_1(X, A), sending
[e] > [dn(c)]. The relative homology is given by

Ha(X, A) = Ha(C. (X, A)).

Cn(X,A) =

‘We think of this as chains in X where we ignore everything that happens in

Theorem (Exact sequence for relative homology). There are homomorphisms
8 : Ho(X, A) = Hy_1(A) given by mapping

[} = [dne]
This makes sense because if ¢ € C,,(X), then [] € C,,(X)/C,.(A). We know
[dnc] = 0 € C,_1(X)/Crz1(A). So dye € Cr—1(A). So this notation makes

sense.
Moreover, there is a long exact sequence

Py Ha(A) " Ho(X) — " Ho(X,A) ——
W R =

I
S Hy oy (A) — Hy (X)) " Hy (X A) —— s

S Hp(X) —%— Hy(X,A) —— 0

where 4, is induced by i : C.(A) - C.(X) and g. is induced by the quotient
q: C.(X) = C.(X, A).

Definition (Map of pairs). Let (X, A) and (Y, B) be topological spaces with
ACX and BCY. A map of pairs is a map f: X — Y such that f(4) C B.

Such a map induces a map f. : Ha(X, A) = H, (Y, B), and the exact sequence
for relative homology is natural for such maps.

Theorem (Excision theorem)s Let (X, A) be a pair of spaces, and Z C A be
such that Z C A (the closure is taken in X). Then the map
Hn(X\Z,A\ Z) » Hu(X, 4)

is an isomorphism.

X

While we've only been talking about homology, everything so far holds anal-

again homotopy invariant, and there is a
Vietoris sequence (with maps 9y : H*(AN B) — H" *(X)). The rela-
ohomology is defined by C* (X, A) = Hom(C. (X, A), Z) and so H*(X, A)
is the cohomology of that. Similarly, excision holds.

ogously for cohomology too. Tt i

Definition (Degree of a map). Let f: S" — S be a map. The degree deg(f)
is the unique integer such that under the identification H,,(S") & Z, the map .
is given by multiplication by deg(f).

Proposition.

5) deg(ids) = 1 (iii) We have deg(f o g) = (deg f)(deg 9).
(ii) I [ is not surjective, then deg(f) = 0. (¥) Homotopic maps have equal degrees.

Lemma. Let M be a d-dimensional manifold (i.e. a Hausdorff, second-countable
space locally homeomorphic to R?). Then

Ho(M, M\ {z}) = {OZ 2=0

otherwise

This is known as the local homology.

Theorem (Snake lemma).  Suppose we have a short exact sequence of complexes
0— A —=B. 50 —0.

Then there are maps
9 Hy(C.) = Hoo1(A)

such that there is a long exact sequence
- H,(A) —"— H,(B) —"— H,(C
(4) A (B) W(C) —
e
S () s Hya(B) s H1(0) —
Lemma (Five lemma). Consider the following commutative diagram:
f

Atsp e tsp s E

N

P N R RN AN ) RN

If the two rows are exact, m and p are isomorphisms, ¢ is injective and ¢ is
surjective, then n is also an isomorphism.

Corollary. Let f : (X,A) — (Y, B) be a map of pairs, and that any two
of fo: H(X,A) = H.(Y,B), H.(X) — H,(Y) and H,(A) — H.(B) are
isomorphisms. Then the third is also an isomorphism.

Definition (Chain homotopy). A chain homotopy between chain maps f.,g. :
C. — D. is a collection of homomorphisms F}, : C,, — Dy 41 such that

Gn = fa=d 0 Fy+ Fuy0df : Cp = Dy
for all n.

Lemma. If f. and g. are chain homotopic, then f. = g. : H.(C.) — H.(D.).

4 Reduced homology

Definition (Reduced homology). Let X be a space, and zp € X a basepoint.
We define the reduced homology to be H.(X) = H.(X,{z0}).

LES of a pair > Ha(¥) ¥ Ha(X) Wno
Definition (Good pair). We say a pair (X, 4) is good if there is an open sot U

containing A such that the inclusion A < U is a deformation retract, i.e. there
exists a homotopy H : [0,1] x U — U such that X

H(0,2) = /
H(l,z)e A
H(t,a)=aforallac At <0,1].

Theorem. If (X, A) is good, then the natural map
Ho(X,A) — H.(X/A, A/A) = H.(X/A)
[

o _ ol
is an isomorphism. CRC

5 Cell complexes

Lemma: If A C X is a subcomplex, then the pair (X, A) is good.
Lemma. Let X be a cell complex. Then

(i)

0 #n
@dﬁ[,, Z i= y

Hiy(X", X" = {

(i) Hi(X™) =0 for all i > n.
(iii) Hi(X™) — H;(X) is an isomorphism for i < n.
Tor a cell complex X, let

Cel(X) = T (X", X" ) = P 2.

ael,
We define diel! : C¢H(X) — €& (X) by the composition
H, (X7, X L) _a., H,_1(X"1) 4, H, (X1, Xn-2)

Theorem. H'(X) = H,(X).

Corollary. If X is a finite cell complex, then H,(X) is a finitely-generated
abelian group for all n, generated by at most |I,,| elements. In particular, if
there are no n-cells, then H,,(X) vanishes.

Definition (Cellular cohomology). We define cellular cohomology by
Cla(X) = HM (X", X"™")

and let d”, be the composition

q

[["(X".X"_I) ,IH(Xn) a9 II"“(X"'H.X")_
C.o(X) = Hom(C¢'(X), Z).

6 (Co)homology with coefficients

Definition ((Co)homology with coefficients). Let A be an abelian group, and
X be a topological space. We let

C.(X;4)=C.(X) 0 A

with differentials d ®1id 4. In other words C.(X; A) is the abelian group obtained
by taking the direct sum of many copies of A, one for each singular simplex.

€ (X; A) = Hom(C.(X), A),
We call A the “coefficients”, since a general member of C. (X; A) looks like

> nes, whereng €4, A" = X.

7 Euler characteristic
Definition (Euler characteristic). Let X be a cell complex. We let

x(X) = Z(—l)” number of n-cells of X € Z.

n

xz(X) =Y (=1)" rank H,,(X;Z).

n

xe(X) =Y _(~1)" dimp Hy(X; F).

n

If 0 A—B—C—>0 is exad, then

onk (B) = vank(A) +rank(C) by 1% iso thm.

8 Cup product

Definition (Cup product). Let R be a commutative ring, and ¢ € C*(X; R),
¥ € C(X: R). Then ¢ — ¢ € C¥H(X;R) is given by 0y icason

(&= V)@ : A = X) = 6(0lug....on) V(O foprnsa))- € R

H(X:R) = @ H"(X; R)

Lemma. If ¢ € C*(X; R) and ¢ € C*(X; R), then
d(¢ — ) = (dp) — ¥ + (=1)*¢ — (db).

Corollary. The cup product induces a well-defined map
—: H*(X; R) x HYX; R) — H**Y(X;R)
(8L, W) — [p — ¥l

Proposition. (I*(X;R),—,[1]) is a unital ring.

Proposition. Let R be a commutative ring. Ifia}e H*(X; R) and(8)e HY(X; R),
then we have

{a)=18)= (D811

Proposition. The cup product is natural, i.e. if f : X — ¥ is a map, and
a, 8 € H*(Y: R), then

fra = 8)=f"(e) = f*(8).

Definition (Cross product). Let 7x : X x Y — X, 7y : X x Y = Y be the
projection maps. Then we have a cross product
x : H*(X;R) ®r H(Y;R) —— H**(X x Y;R)

a®b— (mya) — (mb)
Note that the diagonal map A : X — X x X given by A(z) = (2,2) satisfies
Ataxb)=a—b

for all a,b € H*(X; R). So these two products determine each other.
There is also a relative cup product

—: HY(X, A;R) ® H*(X; R) - H*"(X, A: R)
9 Kiinneth theorem and universal coefficients theorem

Theorem (Kiinneth’s theorem). Let R be a commutative ring, and suppose
that H™(Y; R) is a free R-module for cach n. Then the cross product map

@ H(X:R)® H'(Y;R) —— H™X X Y:R)

kt=n

is an isomorphism for every n, for every finite cell complex X.

H*(X;R) @H*(Y;R) —~ 5 H*(X xY;R)

is an isomorphism of graded rings.

a@gb M axb

where  we  define multiplication in LMS graded ring o be
wllcl

(agb)(cod) = () (avc)e(bwd)

Theorem (Universal coefficients theorem for (co)homology). Let R be a PID
and M an R-module. Then there is a natural map ol deat dm‘ﬂ\
(le. @«

H,(X;R) @ M — H.(X; M).

If H.(X;R) is a free module for each n, then this is an isomorphism. Similarly,
there is a natural map

H*(X; M) — Homp(H.(X: R), M),,

which is an isomorphism again if H*(X; R) is free.

Homology of X ¥¥: Can defise  Choin complees  Co(xx4) =, & Ceecel)

and the  differential is d(uev) = duov +(-D%uadv



10 Vector bundles

10.1 Vector bundles

Definition (Vector bundle). Let X be a space. A (real) vector bundle of
> structure
on each fiber B, = n~'({z}), subject to the local triviality condition: for each
z € X, there is a neighbourhood U of x and a homeomorphism ¢ : E|y =

dimension d over X is a map m : E — X, with a (real) vector s

7 1 (U) = U x R? such that the following diagram commutes

Ely £ U xR?

\

and for each y € U, the restriction @[, : By = {y} x R is a linear isomorphism

for each y € U. This maps is known as a local trivialization.

Definition (Pullback of vector bundles). Let 7 : £ — X be a vector bundle,
and f:Y — X a map. We define the pullback

FE={(ye) €Y xE: f(y) =n(e)}-
This has a map f*m: f*E — Y given by projecting to the first coordinate. The
vector space structure on each fiber is given by the identification (f*E), = Ey(,)
Example (Grassmannian manifold). We let

Veckor  subspaces)

X = Gri(R") = {k-dimensional lmea.r subgroups of R™}.

E ={(V,v) € Gr(R") x R" : v € V}.
N call this bundle 7%, — Grg(R").
U = {W e Gre(R") : WnV* = {0}}. ’
The normal bundle of M in N is
P*TN
v, = —.
MCN M

Theorem (Tubular neighbourhood theorem). Let M C N be a smooth sub-
manifold. Then there is an open neighbourhood U of M and a homeomorphism

cn — U, and moreover, this homeomorphism is the identity on M (where
ew M as a submanifold of vyc x by the image of the zero section).

Definition (Partition of unity). Let X be a compact Hausdorff space, and
{Ua}acs be an open cover. A partition of unity subordinate to {Uy} is a
collection of functions Ay : X — [0, 00) such that
(i) supp(Aa) = (7 € X : Aa(@) > 0} C U.
reatly o owed
(ii) Each = € X lies in finitely many of these supp(Aa). 1% ..,‘."‘.[,:‘",‘,‘?‘m,
S
(iii)) For each z, we have
D@ =L LI e
ael

Lemma: Let 7 : E — X be a vector bundle over a compact Hausdorff space.
Then there is some N such that E is a vector subbundle of X x RV,

Theorem. There is a correspondence

homotopy classess d-dimensional
of maps — vector bundles

[ X = Grg(R>) T E—X

1 — o8

[fa] &7

10.2 Vector bundle orientations

R i=d
# i #. R~ Hi(RY. R CR) =
B¥ = B\alX). (R EER) @ oy - T d

Definition (R-orientation). A local R-orientation of E at z € X is a choice of

R-module generator e, € HY(E,, E¥#; R).

An R-orientation is a choice of local R-orientation {¢,},cx which are com-
if U C X is open on which E is trivial, and z,y € U,

patible in the following wa
then under the homeomorphisms (and in fact linear isomorphisms):

e, Sx and Sy Conerpond ko 4he
E he ame a @ HACRG ROLR)

Ely —25 U xR 25 R¢
E, hy
the map

hyo(hy') s HY(E., BY; R) — HY(E,, Ef; R)

sends &, to
because we used it twice, and they cancel out.

Lemma! If {U,}.c; is a family of covers such that for each a,3 € I, the

homeomorphism

(UaNUp) x RY <22~ Ely, vy, —> (Ua NUp) x RY

positive determinant on each fiber, then E is orientable for any R.

10.3 The Thom isomorphism theorem

Theorem (Thom isomorphism theorem). Let 7 : E — X be a d-dimensional

vector bundle, and {e, },cx be an R-orientation of E. Then

(i) HY(B,E#;R) =0 fori < d.

(ii) There is a unique class up € HY(E, E#; R) which restricts to e, on each

fiber. This is known as the Thom class.

(iii) The map @ given by the composition

Hi(X;R) —F— H(E;R) ——E» H'+4(E,E#;R)

Femember:
aksolute  relative * celaive

is an isomorphism.

Note that (i) follows from (iii), since H*(X: R) = 0 for i < 0.

Note that this definition does not depend on the choice of ¢/,

s an orientation preserving map from (U, N Us) x R? to itself, i.e. has a

Definition (Euler class). Let 7 : E — X be a vector bundle. We define the
Buler class e(E) € H(X; R) by the image of ug under the composition

we HYEE#R) —— HYE;R) =5 HY(X:R) . * «©
v

Theorem. We have
ug — ug = ®(e(B)) = 7*(e(E)) — up € H*(E, E#; R).
Lemma: If 7: £ — X is a d-dimensional R-module vector bundle with d odd,

then 2e(E) = 0 € HY(X: R).

Theorem. If there is a section s : X — E which is nowhere zero, then e(E) =
0¢€ HYX;R).
10.4 Gysin sequence

Definition (Sphere bundle). Let 7 : E — X be a vector bundle, and let
{-,+): E®E — R be an inner product, and let

S(E) = {v e E; (v,v) =1} C E.

ciated to E.

This is the sphere bundle as

H(E, B#) —% giti(E) L gird(p#) 0, gt B#)

Aw s ) 1
Hi(X) D, pid(x) 2y gied(s(E) — s HH(X)

r S
R L g,

11 Manifolds and Poincaré duality

11.1 Compactly supported cohomology

Definition (Compactly-supported cohomology). The compactly supported co-
homology of X is
HE(X) = HY(C3(X)).
Note that we can write
fo

@)= U OCEX\K)CC(X).

K compact
HI(X) =l H"(X, X\ K).
K(X)
Extension by e keEUSX, E compact, @ open. Tren excision gives us an s

WY W, WUGRY = (X, X\GR) ot weger o map taking the diest limiv called

eenion by r: G W) > ad)

xtension by zero”.
— if you have a cohomology cla
simplex in X, if it lies inside
then we just send it to zero. Then by ba.ryccntric subdivision, we can assume
every simplex is either inside U or outside K, so we are done.

Indeed, this is how the m)\umnlng» cl

Lemma. We have

TR ) = {R i=d

0 otherwise

H™(X | K;R) = H*(X, X \ K; R).

Propesition: Lot K, L C X he compact. Then there is a long exact scquence
U HNX | KUL)

HM(X | KNL) ™ HY(X | K)® H*(X | L)

R a
= HTUX [ KNL) — HY(X | K) & H ™ (X | L) —— -

Corollary. Let X be a manifold, and X = AU B, where A, B are open sets.
Then there is a long exact sequence

[ (o= il
e,

HM(ANB) Y2 H(A) & H(B) HE(X)

HH (AN B) —— H

(A) @ HMY(B) ———

11.2 Orientation of manifolds

Definition (Local R-orientation of manifold). Fr a d-manifold M, a local R-
orientation of M at z is an R-module generator 1, = Hy(M | 3 R).

Definition (R-orientation). An R-
local R-orientations such that if

of M is a collection {ji }ecar of

:REBUCM
is a chart of M, and p,¢ € R?, then the composition of isomorphisms i« .a<d*
Ha(M | ¢(p) = Ha(U | ¢(p)) 5= Hy(RY | p) = s 16
l“ ]
HAM | 0l0)) i HalU | 9(0)) 5 Ha(®?] q) <= m™)
sends j 10 . where the vertieal somorphism is induced by a translation of
R4,
Byt om (Ot e o) It s s

J:U =V with U,V € BY open, we say [ is R-orientation-preserving if for each
& €U, and y = f(x), the composition

Hy(R | 0; R) mnslation pr g | o ) _excision, pr 7 | 4 )

|

Hy(RY | 0; B) S2sletion pp (g | g R) X800, 1,y | 2 R)
is the identity Ha(R? | 0; R) — Hy(R? | 0; R).
Lemma.
(i) If R = T3, then every manifold is R-orientable.

(i) If {gq : RY — U,y © M} is an open cover of M by Euclidean space such
that each homeomorphism

.
.

R 2 o3 (Ua NUp) «2*— U NUp —— 93" (Ua N Up) C R
is orientation-preserving, then M is R-orientable.

Theorem. Let M be an R-oriented manifold and A C M be compact. Then

(i) There is a unique class j1a € Hy(M | A; R) which restricts to p, € Ha(M |
2;R) for all z € A.

(i) Hi(M | A;R) = 0 for i > d.

Definition (Fundamental class). The fundamental class of an R-oriented mani-
fold is the unique class [M] that restricts to ju, for each z € M.

11.3 Poincaré duality

Theorem (Poincaré duality). Let M be a d-dimensional R-oriented manifold.
Then there is a map

Dy HE(M; R) — Hy(M; R)
that is an isomorphism.

Definition (Cap product). The cap product is defined by
A CE(XiRY B Co(X5R) = Cag (%:R)

$reis o lewmve 4 (5 ey ma)
S that @ (gnac) = (@ ogl(o)
4(dns) = () 4pne 4 gads.

Lemma. If f: X — Y is a map, and z € Hg(X;R) And y € H*(Y; R), then
we have

K ~x) = ¢ anlx)
Corollary. For any compact d-dimensional R-oriented manifold M, the map
[M] ~ - : HY(M;R) — Hy_((M;R)

erdinany  conomolagy
is an isomorphism.

Corollary. Let M be an odd-dimensional compact manifold. Then the Euler
characteristic x(M) = 0.

Theorem. Let M be a d-dimensional compact R-oriented manifold, and consider
the following pairing:
(-,-): H"(M;R)® H*"*(M,R) —— R
[l W] — (v — ¥)[M)

If H.(M;R) is free, then (-, -) is non-singular

11.4 Applications

Definition (Signature of manifold). Let M be a 4k-dimensional Z-oriented
manifold. Then the signature is the number of positive eigenvalues of

(-, ) H*(M;R) ® H*(M;R) — R
minus the number of negative eigenvalues. We write this as sgn(M).

Fact. If M = OW for some compact 4k + 1-dimensional manifold W with
boundary, then sgn(M) = 0.

Definition (Degree of map). If M, N are d-dimensional compact connected
Z-oriented manifolds, and f: M — N, then

fo([M]) € Ha(N,Z) = Z[N].
So f.([M]) = k[N] for some k. This k is called the degree of f, written deg(f).

11.5 Intersection product

Write vycar for the normal bundle of N in M. Picking a metric on TM, we
can dCCOlUpOS(‘
P"TM = TN @ vy,

we have an isomorphism

H'(vncw, Vﬁg,? R)=H; i(N:R).

Theorem. The Poincaré dual of a submanifold is (the extension by zero o
normal Thom class.

The DD o [NT € HalMjR) s the exension by zerd of the Thom class o Unsm
oy don
Tdea: under the  iso M (U,0*iR) 2 W (0iR) > Hg(N3R) , [N coreponds © some Ewsm

looks ke and  smells like @ Thom o5, Swcm 15 a Thom s o nomal  bundie

B IN] and Ewse 9o maped to Ou'(TNT) under the respeciive maps

ext o

Wa(NR) = Wl wiR) = wE " (wyR) W (wiR)

W\
HEMU PR — 0 (0iR) = wh(wr) 2T W (MR)

‘Whenever the intersection is transverse, the intersection N N'W will be a

submanifold of M, and of N and W as well. Moreover,

(%vmwgm):» = (VNgu)1 ® (an'g;u)l-
Now consider the inclusions
in: NNW <= N
wiNNW = W

Then we have

vNawen = in(vnem) @ Gy (viwem)-

So with some abuse of notation, we can write
inEncm — iéwen € H"(vawgm,Vﬁmng:H),
and we can check this gives the Thom class. So we have
Dy (IN)) = D3/ (W) = Dy (N N W]).
Definition (Intersection product). The intersection product on the homology
of a compact manifold is given by
Hy, (M) © Hyy (M) —— Hyp—g(M)

(a,b) —— a-b =Dy (Dj (a) — Dy (b))



